ASUE-Fachtagung Heiz- und Kühlanwendungen mit Gaswärmepumpen – Best Practices

Gaswärmepumpen in der EnEVNormung

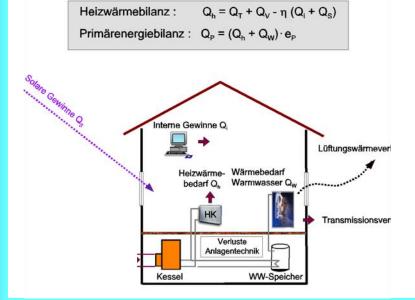
Frankfurt am Main 17.09.2014

INHALT

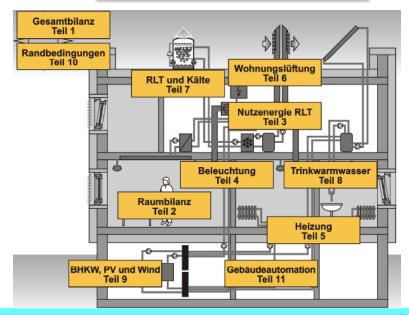
- Einleitung
- EnEV-Nachweis für innovative Technologien
 - EnEV 2014
 - Bewertungsvorschläge
- Gaswärmepumpen in der Systemnormung
 - aktuell
 - perspektivisch
- Fazit

Politisches Umfeld

Energiekonzept der Bundesregierung "für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung"


4		Gebäuderelevante Klimaschutzziele	2020	2030	2040	2050
	übergreifend	CO ₂ -Reduzierung (Bezugsjahr 1990)	- 40%	- 55%	- 70%	>- 80%
		Anteil erneuerbarer Energien am Bruttoenergieverbrauch	18%	30%	45%	60%
	sektorspezifisch	Sanierungsrate - Gebäude	Verdopplung von jährlich 1% auf 2%			
		Reduzierung Primärenergiebedarf				- 80%

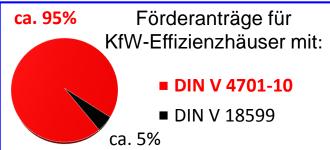
Ohne Einsatz innovativer Effizienztechnologien, nicht erreichbar


Regelverfahren der EnEV

- Energetische Bewertung nach EnEV 2014 und darauf aufbauenden Regelungen (EEWärmeG, KfW-Förderung)
 - 2 zulässige Nachweisverfahren für Wohngebäude
 - DIN V 4701-10:2003-08
 - DIN V 18599:2011-12
 - Zusätzlich vereinfachtes Modellgebäudeverfahren

DIN V 4701-10

DIN V 18599

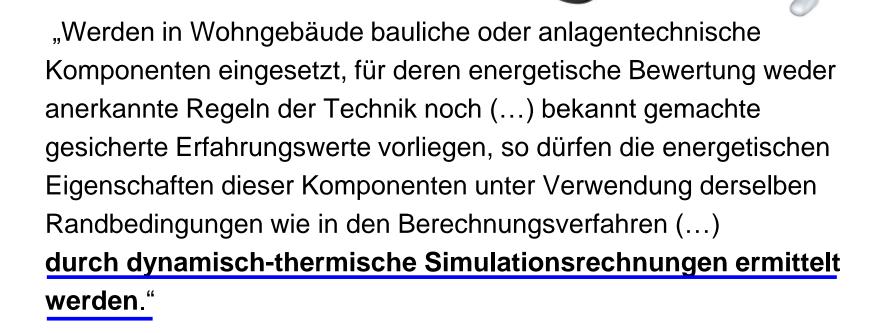

Problem: EnEV-Nachweis für innovative Technologien EnEV 2014

DIN V 4701-10

- Seit 11 Jahren unverändert!
- Kein Verfahren für die Bewertung von Gaswärmepumpen, Brennstoffzellen, dezentralen Pumpen
- Mikro-KWK nicht ohne Weiteres
 rechenbar

DIN V 18599

- Bewertung von Mikro-KWK möglich
- Vereinfachtes Verfahren für die Bewertung von Sorptions-GWP,
- Keine Bewertung von Brennstoffzellen ...


Vorgehensweise für innovative Technologien nach EnEV 2014:

Ermittlung energetischer Eigenschaften durch dynamisch-thermische Simulationsrechnungen

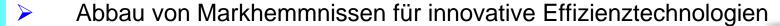
EnEV 2014

Anlage 1 zur EnEV 2014

Nummer 2.1.3:

EnEV 2014: neue Vorgehensweise, altes **Problem**

Einbeziehung dynamisch-thermischer Simulationsrechnungen


 z.T. erleichterte EnEV-Bewertung für Nichtwohngebäude mit großer Planungstiefe

- keine geeignete Vereinfachung für den Massenmarkt der kleinen Wohngebäude
- weiterhin keine rechtssichere Situation für den Nachweisführenden
- Notwendigkeit einer Abstimmung mit der nach Landesrecht zuständigen Behörde (Prüfung im Einzelfall)
- Hilfskonstruktionen wie z.B. von unabhängigen Sachverständigen erarbeitete Vorschläge für die energetische Bewertung im Rahmen der EnEV wie bisher erforderlich

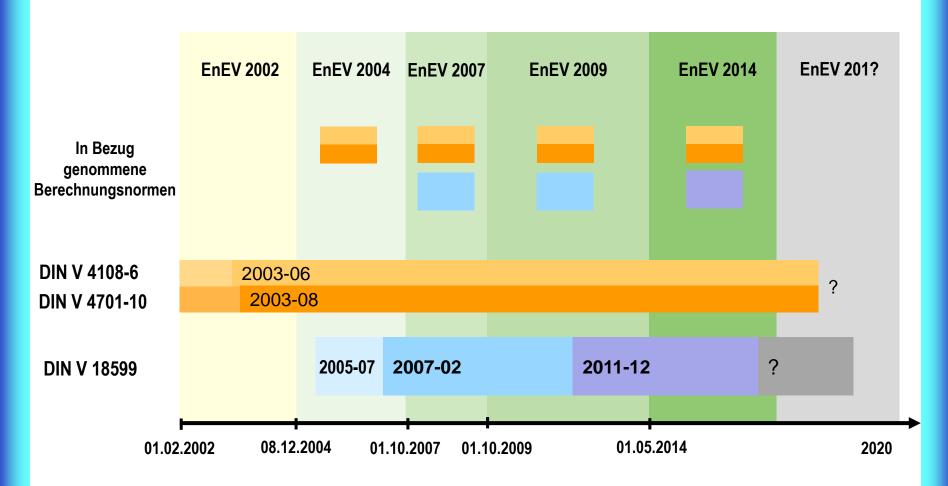
Zukünftige Anerkennung neuer Bewertungsvorschläge ???

Verbesserung des Status Quo durch zukünftige Prüfung und Anerkennung der Bewertungsvorschläge:

- Ermöglichung einer EnEV-Berechnung für innovative Effizienztechnologien mit branchenüblicher (Energieberater-) Software
- Vereinfachung und Rechtssicherheit für den nachweisführenden Planer
- Entlastung und Vereinfachung für die genehmigende Baubehörde
- Stärkung der deutschen Industrie, da innovative Produkte auf dem Heimmarkt abgesetzt werden können
- Fairer Wettbewerb zwischen Systemen und Technologien
- Förderung von Energieeinsparung und Klimaschutz

Grundsätzliche juristische Möglichkeiten der EnEV

- Zeitlicher Gleichklang EnEV und Berechnungsnormen unrealistisch
- Zur Erzielung einer (rechts)sicheren Situation Prüfung und Anerkennung von Bewertungsvorschlägen durch den Verordnungsgeber bzw. die für die Umsetzung der EnEV zuständigen Bundesländer notwendig


Lösungsoptionen:

- a. Veröffentlichung innerhalb der Auslegungen zur EnEV nach Prüfung durch die Fachkommission Bautechnik der Bauministerkonferenz
- b. Regelmäßiges Fortschreiben der Bekanntmachungen zur EnEV
- c. Veröffentlichung einer Liste durch die KfW mit zugelassenen Bewertungsansätzen für Förderanträge

Vorschlag a. –Veröffentlichung innerhalb der Auslegungen zur EnEV– am besten geeignet für die Erreichung der angestrebten Ziele

Zeitliche Abfolge des Geltungsbereichs der EnEV und des jeweiligen Ausgabemonats der Berechnungsnormen

Welche Technologien sind betroffen?

Auswahl I

- Mikro-KWK (Stirlingmotor, Ottomotor)
- Gaswärmepumpen
- Brennstoffzellen
- Abwärmenutzung bei Tiefkühltruhen in Verkaufsstätten

Bild: Viessmann

Bild: Vaillant

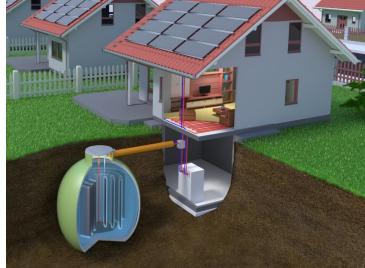

Welche Technologien sind betroffen?

Bild: Haase

Auswahl II

- Dezentrale Heizungspumpen
- Wärmerückgewinnung aus Duschwasser
- Wärmepumpen mit Eisspeicher
- Solar-Luft-Kollektoren
- > PCM
- **>** ...

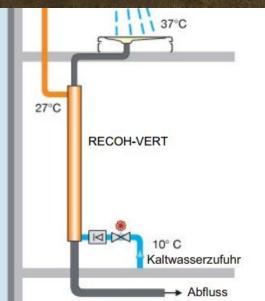
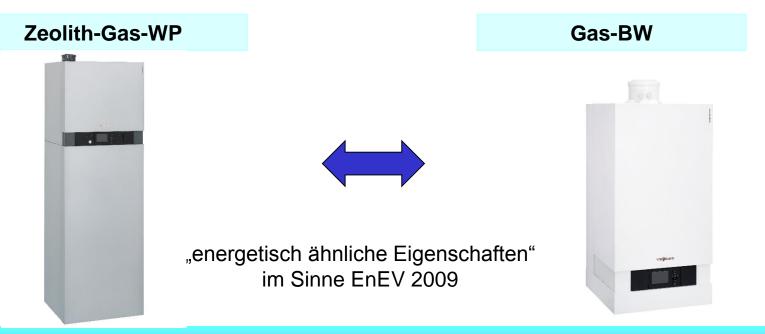



Bild: Hei-Tech

Bewertungsvorschlag VITOSORP 200-F DIN V 4701-10

Bewertungsvorschlag für Zeolith-Gas-WP:

Anlagenbewertung nach DIN V 4701-10 wie für einen Gas-Brennwertkessel, mit geänderten Kennwerten entsprechend den Produktdaten der VITOSORP 200-F sowie mit einer Anpassung des Teillastwirkungsgrades an die mittlere Rücklauftemperatur

Bewertungsvorschlag Zeolith-GWP ohne Solar

Anlagenbewertung nach DIN V 4701-10

• Bestimmung des Heizenergiebedarfs des Gebäudes

2

 Bestimmung des 30%-Teilastwirkungsgrades in Abhängigkeit von der Heizkreisauslegungstemperatur und der Gebäudeheizlast

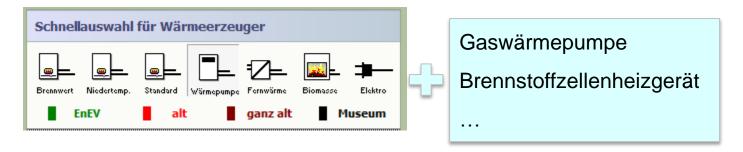
3

 Definieren eines Gas-Brennwertkessels als Wärmeerzeuger auf der Heizungsseite mit angepassten Kennwerten entsprechend dem Vorschlag

▼ △

 Bestimmung des Trinkwasser-Energiebedarfs, Definieren eines TWW-Speichers mit Standardwerten bzw. produktspezifisch

5


 Definieren eines Gas-Brennwertkessels als Wärmeerzeuger im Kombibetrieb (Heizung +Warmwasser) mit Kennwerten entsprechend dem Vorschlag

6

Ermittlung des Jahres-Primärenergiebedarfes des Gebäudes

Mögliche Implementierung neuer Bewertungsansätze in die EnEV-Software?!

1. Aufnahme zusätzlicher Wärmeerzeuger / sonstiger technischer Lösungen in marktgängige Energieberaterprogramme

- 2. Unsicherheiten / rechtliche Schwierigkeiten für Softwarehersteller
- 3. Haftung?

Erster Schritt in die richtige Richtung Sorptions-GWP in der Neufassung DIN V 18599

- Sorptions-Gaswärmepumpen nach DIN V 18599:2011 (Teil 5 und 8) berechenbar
- Sehr stark vereinfachtes Verfahren zur energetischen Bewertung von GWP anhand der thermischen Nutzungsgrade
- Verwendung von Produktkennwerten (nach VDI 4650 Blatt 2) möglich, alternativ
- Verwendung von Standardwerten, dann nur Auslegungstemperaturen erforderlich
- Einheitliche Bewertung im Sinne der EnEV
- Nachteil: Viele wesentliche Einflussfaktoren (z.B. Belastungsgrad, Betriebsweise, Quellentemperaturen) ohne Berücksichtigung

Neues Verfahren notwendig

Bild: Vaillant

Fortsetzung der Normungsaktivitäten

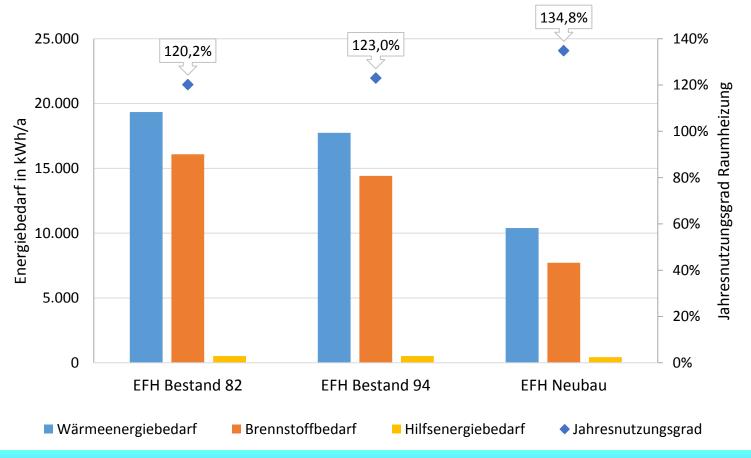
- Forschungsprojekt:
 - Erarbeitung eines geeigneten Bewertungsverfahrens für Sorptions-Gaswärmepumpen im Rahmen der energetischen Systemnormung
- Projektlaufzeit: 06/2012 08/2014 (abgeschlossen)
- Projektbearbeitung: ITG Dresden
- Projektfinanzierung:
 - Öffentliche Förderung durch BBSR
 - IGWP
 - VF NHRS
- Aktenzeichen: II 3 F20-11-1-005 / SWD-10.08.18.7-12.10

Vorbereiten und Einbringen eines Bewertungsvorschlages in die zuständigen Normungsausschüsse

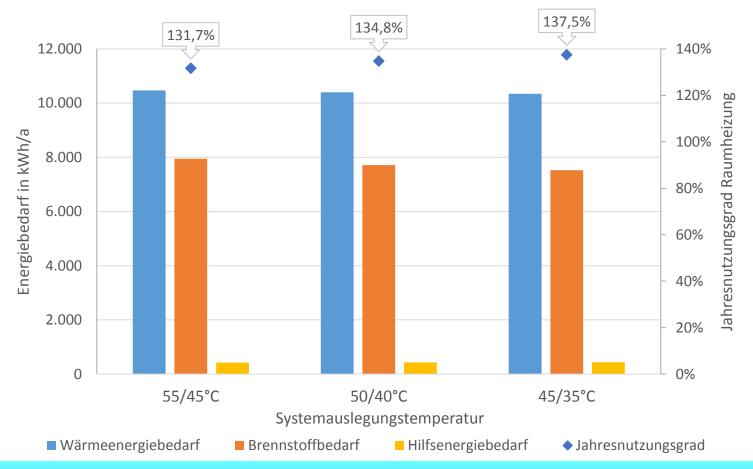
(zunächst national, später für die europäische Normung)

Normvorschlag für Sorptions-GWP

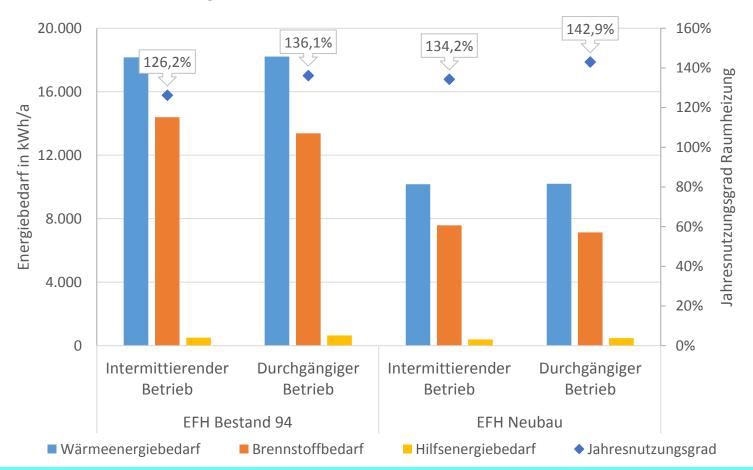
- Basierend auf Jahresnutzungsgraden Raumheizung und Warmwasserbereitung nach VDI 4650 Blatt 2
- Eingangsgrößen: Nennwärmeleistung, untere Modulationsgrenze, Nennleistung des WP-Moduls, elektrische Leistungsaufnahme im Betrieb und bei Stillstand der Gaswärmepumpe
- Korrektur der Nutzungsgrade auf die Auslegungstemperaturen
- Korrektur der Nutzungsgrade auf den Belastungsgrad der GWP
 - Ermittlung von monatsmittleren Belastungsgraden
 - Unterscheidung zwischen Adsorptionsund Absorptionswärmepumpen
 - Verwendung von den Teilastnutzungsgraden nach VDI 4560 Blatt 2 möglich
- Korrektur der Nutzungsgrade auf die Quellentemperatur



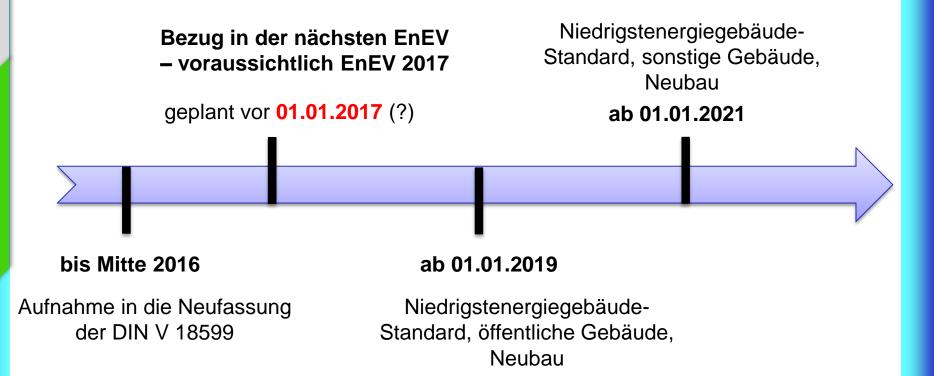
Vorteile besserer Produkte können glaubhaft nachgewiesen werden


Berechnungsbeispiel – Einfluss des Wärmeschutzes

Energiebedarf und Jahresnutzungsgrad Raumheizung einer Adsorptions-GWP (P_n=11 kW) im EFH, Radiatoren 50/40°C


Berechnungsbeispiel – Einfluss der Systemauslegungstemperatur

Energiebedarf und Jahresnutzungsgrad Raumheizung einer Adsorptions-GWP im EFH Neubau, Radiatoren


Berechnungsbeispiel – Einfluss der Betriebsweise

Energiebedarf und Jahresnutzungsgrad Raumheizung einer Adsorptions-GWP im EFH, integrierte Heizflächen, 35/28°C

Zeitschiene für die Umsetzung

Umsetzung in die Praxis abhängig von der Inbezugnahme in der nächsten EnEV und damit dem Datum des Inkrafttretens der neuen EnEV

Fazit

- Innovative technische Lösungen zur Erreichung der Klimaschutzziele unabdingbar
- Aktueller Stand: Probleme bei der Berücksichtigung in der EnEV 2014 und den darauf aufbauenden Regelungen
 - Keine ausreichende Abbildung in den Normen und in Software
 - Keine Bewertung von Berechnungsansätzen durch EnEV/Politik
- Eine Abbildung in neuer Normung grundsätzlich möglich, aber
 - langwierig (in Regelfall mehrere Jahre)
 - z.T. unmöglich (Änderung der DIN V 4701-10 unwahrscheinlich)
- Aktuelle Herangehensweise
 - "Standard"-Innovationen: Verwendung von Herstellerunterlagen, Abstimmung mit Baubehörde
 - Objektspezifische Lösung: dynamisch-thermische Simulation durch Planer für Einzelfall, Abstimmung mit Baubehörde
- Verbesserung der Rahmenbedingungen für den Einsatz innovativer Lösungen durch Politik erforderlich!

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Anhang: Bewertungsvorschlag für Zeolith-GWP Eingangsparameter Heizungsseite

Fiktiver 30%-Teillastwirkungsgrades in Abhängigkeit von den Systemtemperaturen und der Gebäudeheizlast

Auglagungatamparatur	Teillastwirkungsgrad η _{30%}			
Auslegungstemperatur des Heizkreises	Gebäudeheizlast Φ _{HL} = 10 kW	Gebäudeheizlast $\Phi_{\rm HL}$ = 6 kW		
55/45°C	128,1%	136,6%		
50/40°C	130,1%	137,2%		
45/35°C	132,3%	138,0%		
40/30°C	134,9%	138,8%		
35/28°C	136,0%	139,1%		

- Ermittlung der Zwischenwerte für 6 kW<Φ_{HL}<10 kW durch Interpolation</p>
- ightharpoonup Keine Extrapolation für Φ_{HL} < 6 kW ightharpoonup Annahme von Werten für Φ_{HL} = 6 kW
- Bestimmung der Erzeugeraufwandszahl der GWP analog e_{H,g} eines Brennwertkessels nach DIN V 4701-10

Anhang: Bewertungsvorschlag für Zeolith-GWP

Eingangsparameter Warmwassersseite

Angepasster Volllastwirkungsgrad

100%-Lastwirkungsgrad $\eta_{100\%}$

112,3%

- Bestimmung der Erzeugeraufwandszahl der GWP analog e_{TW.q} eines Brennwertkessels nach DIN V 4701-10
- Angaben zur Speicherart bzw. -größe entsprechend tatsächlicher/geplanter Einbausituation als Produktkennwert oder Standardwert
- Bei solarer TWE:
 - Art und Anzahl der Kollektoren, Kollektorfläche sowie Speicherart entsprechend tatsächlicher/geplanter Einbausituation als Produktkennwert oder Standardwert
 - Deckungsanteil solare TWE nach der Berechnungsvorschrift der DIN V 4701-10 bzw. als Ergebnis einer Solarsimulation